

The Recipe for Success in Nutrition and Wound Healing

Nancy Collins, PhD, RDN, LDN, NWCC, FAND

Today's Menu

- ➤ Identify the six characteristics of adult disease-related malnutrition according to the 2012 Academy/ A.S.P.E.N. international Consensus guidelines
- > Review how nutritional deficiencies affect wound healing
- > Implement at least two new nutritional interventions

Facts About Malnutrition¹

- > Defined as a lack of adequate calories, protein, or other nutrients needed for tissue maintenance and repair
- Occurs along a continuum of inadequate intake and/or increased requirements, impaired absorption, altered transport, and altered nutrient utilization
- ➤ Until 2012, no consensus was available on how to diagnose malnutrition:
 - o Electronic health records and interoperability made this evident and necessary

The New Definition of Malnutrition¹

- > The new definition:
 - o Provides a standardized set of diagnostic characteristics used to identify and document malnutrition
 - o Is etiologically based diagnostic nomenclature
 - o Accounts for what we know about inflammatory response
 - o Allows for data collection to add to scientific literature

Risk of Never Events With Preexisting Malnutrition/Weight Loss²

- > Fry et al examined more than 880,000 surgical patient cases from 1368 hospitals to describe risks for never events and hospital-acquired infections:
 - Reported as odd ratios (the numbers indicate the increased risk for development of a certain condition with preexisting malnutrition and/or weight loss)
- > Results:
 - For patients with malnutrition and/or weight loss, the risk for surgical site infection is 2.5 times greater compared to patients who do not have malnutrition and/or weight loss
 - For patients with mediastinitis after a coronary artery bypass graft (inflammation in the mid chest or mediastinum, either acute or chronic), the risk for infection is 5.3 times greater
 - o For patients with a catheter-associated urinary tract infection, the risk is 5.1 times greater
 - o For patients with pressure injuries, the risk is 3.8 times greater
- > Continuity of care and planning at discharge really can help

Diagnosis of Malnutrition³

- > Diagnosed when at least two or more of the following six characteristics are present:
 - o Insufficient energy intake
 - Weight loss
 - o Loss of muscle
 - Loss of subcutaneous fat
 - Localized or generalized fluid accumulation that may sometimes mask weight loss
 - o Diminished functional status as measured by hand grip strength

Energy Intake³

- > Malnutrition is the result of inadequate food and nutrient intake compared to estimated requirements:
 - Review food and nutrition history

Email: www.drnancycollins.com Twitter: @drnancycollins Facebook: www.facebook.com/lightbulbhealth 1

- o Estimate optimal needs
- Compare estimates to consumption
- o Report inadequate intake as a percentage of needs
- > Report weight change as a percentage lost from baseline

Body Fat³

- > Loss of subcutaneous fat:
 - o Orbital, triceps, fat overlying ribs
- > Tools to determine body composition:
 - Skinfold thickness
 - Bioelectrical impedance
 - Bod Pod[®]
 - Nutrition-focused physical exam:
 - Exam that uses physical assessment and function to help determine nutritional status and diagnose malnutrition
 - Systematic approach (head to toe)

Muscle Mass³

- > Loss of lean mass at:
 - Temples (temporalis muscle)
 - Clavicles (pectoralis, deltoids)
 - Shoulders (deltoids)
 - o Interosseous muscles
 - o Scapula (latissimus dorsi, trapezius, deltoids)
 - Thigh (quadriceps)
 - Calf (gastrocnemius)

Fluid Accumulation^{3,4}

- > Evaluate generalized or localized fluid accumulation
- > Weight loss sometimes masked by generalized fluid accumulation
- > Intake/output records
- > Assessment of edema:
 - o Dent depth
 - o Duration

Functional Status^{5,6}

- > Hand grip strength:
 - Measure by dynamometer
 - Validated by proxy for lean body mass (LBM)
 - o Independent predictor of poor nutritional status
- ➤ 4-meter/other walk tests
- > Stair climbing/chair rising/balance
- > Peak expiratory flow
- > Measure overall energy, strength, endurance (ability to perform activities of daily living):
 - Consider non-malnutrition causes (eg, neuromuscular diseases, medication, age-related issues, trauma, activity/mobility)
 - Correlate with other characteristics (weight loss, intake)
- > Norman et al offers strongest correlation to date with muscle mass and nutritional status

THE INGREDIENTS OF SUCCESS

Ingredient #1: Energy (or Calories)

- Insufficient caloric intake=weight loss
- ➤ Unintended weight usually is loss of LBM

Relationship Between LBM Loss and Wound Healing^{7,8}

- > <10%—wound healing has priority for protein substrate
- > >10%—stimulus to restore LBM competes with the wound for protein
- > >20%—correction of LBM takes precedence, wound healing stops

NPUAP Clinical Practice Guidelines: Caloric Intake⁹

- If patient cannot achieve nutritional requirements by dietary intake, offer fortified foods and/or highcalorie, high-protein oral nutritional supplements between meals
- > Strength of Evidence=B; Strength of Recommendation=
- > Strong positive recommendation, definitely do it

Ideas to Increase Calories¹⁰⁻¹²

- > Favorite and culturally appropriate foods
- Socialization at meals
- > Diet order liberalization
- Multiple smaller meals throughout the day
- > Proper mealtime positioning
- > Assistance at meals:
 - Cueing
 - o Hand over hand
 - Mirroring
- > Recipe modification
- > Oral nutritional supplements:
 - Try varied forms, including juices, puddings, bars, shakes, cookies, ice creams
- > Appetite stimulants

Ingredient #2: Protein

- ➤ Only nutrient containing nitrogen¹³
- > Responsible for synthesis of enzymes involved in wound healing and collagen synthesis 13
- ➤ Needed at every step of the healing process¹³

Estimating Protein Needs

- Protein needs assessed as grams of protein per kilogram of body weight (q/kq bw)
- > Recommended Dietary Allowance (RDA)=0.8 g/kg bw:
 - o For 140-lb patient=51 g or 7 oz
- > Stressed, malnourished patient=1.2-1.5 g/kg bw:
 - o For 140-lb patient=76-95 g or 11-14 oz
- Critically ill or injured patient=1.5-2.0 g kg/bw:
 - o For 140-lb patient=95-127 g or 14-18 oz
- > Important to:
 - o Evaluate renal function
 - o Provide adequate fluids

Protein Distribution¹⁴

- Optimal protein distribution:
 - o Breakfast=≈30 g protein

- Lunch=≈30 g protein
- o Dinner=≈30 g protein
- > Skewed protein distribution:
 - o Breakfast=≈10 g protein
 - o Lunch=≈20 g protein
 - o Dinner=≈60 g protein

How to Get More Protein to Your Patient

- ➤ Food:
 - o Eggs, beef, chicken
 - o Nuts, legumes
 - Protein shakes
 - o Recipe modifications
- > Modular protein supplements:
 - Added to food
 - o Given between meals or with medications

Modular Protein Supplement Choices

- > Whey:
 - o High biological protein source
 - o Formulated from cow's milk
- > Casein:
 - Milk protein extract
 - o Less bioavailable than whey
- > Soy or vegan:
 - o Good biological legume
- > Collagen:
 - Natural to the body
 - o Main component of cartilage, ligaments, tendons, bones, and teeth

Deciding on a Protein Supplement

- > Form:
 - Liquid
 - \circ Powder
- > Final volume
- > Nutrient density
- Palatability
- > Ease of administration
- > Use of tube feedings
- Digestibility
- Cost

Ingredient #3: Amino Acids

- > When protein is consumed:
 - o The digestive system breaks it down into individual amino acids
 - The body's cells then combine the amino acids and link them together to form a new protein within the body

Classification of Amino Acids¹⁵

- > Indispensable amino acids:
 - Histidine

Email: www.drnancycollins.com Twitter: @drnancycollins Facebook: www.facebook.com/lightbulbhealth 4

- Isoleucine
- Leucine
- Lysine
- o Methionine
- Phenylalanine
- o Threonine
- Tryptophan
- Valine
- Dispensable amino acids:
 - o Alanine
 - Aspartic acid
 - Asparagine
 - o Glutamic acid
 - o Serine
- Conditionally indispensable amino acids:
 - Arginine
 - Cysteine
 - Glutamine
 - Glycine
 - o Proline
 - o Tyrosine

Arginine¹⁶

- Nitrogen-rich—32% nitrogen
- > Helps support immune function
- > Precursor to proline
- > Improves IGF-1
- Precursor to polyamines
- > Substrate for nitric oxide synthesis:
 - Activates macrophages
 - Improves vasodilation
 - o Increases collagen formation

Glutamine^{17,18}

- Most abundant amino acid in the body:
 - >20% total circulating AA
 - >60% intracellular AA
- Increased needs in trauma and sepsis
- > Benefits of supplemental glutamine include:
 - Stimulating collagen synthesis
 - o Regulating nitrogen metabolism in catabolic states
 - Supporting immunity
 - Supporting gut integrity

NPUAP Clinical Practice Guidelines: Protein Intake9

- ➤ When an adult patient with a pressure ulcer Category/Stage 3 or 4 or multiple pressure ulcers cannot meet nutritional requirements with traditional high-calorie and protein supplements, supplement with high protein, arginine, and micronutrients
- Strength of Evidence=B; Strength of Recommendation=

Diabetic Foot Wounds¹⁹

> Targeted amino acid supplementation on diabetic foot wounds

- > Results of this pilot data and review of the literature show:
 - Administration of a simple amino acid supplement may improve the healing of diabetic foot wounds via increased collagen

Leucine^{20,21}

- > Branched chain amino acid
- > Stimulates mTOR signaling
- > Stimulates muscle protein synthesis under both in vitro and in vivo experimental conditions
- > 5% of leucine is converted to β-hydroxy-β-methylbutyrate (HMB)

HMB²²⁻²⁵

- > Is a metabolite of the amino acid leucine
- > Precursor for the manufacture of cholesterol:
 - o Helps maintain muscle membrane integrity
 - o Slows muscle tissue breakdown
- > Helps support immune system
- > Anabolic support:
 - o Reduces the inflammatory process
 - o Decreases muscle breakdown
 - o Builds LBM
 - Protects muscle from stress-related damage

Ingredient #4: Vitamins and Minerals

- > Can meet needs with a healthy diet9
- Elderly, sick, infirm many not have optimal diet⁹
- > Consider heavily draining wounds9
- ➤ Reasonable to give multivitamin daily⁹
- "Offer vitamin and mineral supplements when dietary intake is poor or deficiencies are confirmed or suspected."—NPUAP9

Vitamin C²⁶

- > Works with proline and lysine during collagen synthesis
- > Needed for carnitine production for fatty acid metabolism
- > Tensile strength
- Body does not store vitamin C

Zinc²⁷

- > Needed for all enzymatic reactions
- > In deficiency state, may find low rate of epithelialization
- > Deficiency causes decreased wound and collagen strength
- Urinary losses increase with stress and weight loss
- Body stores may become depleted in patients with malnutrition, chronic diarrhea, and chronic corticosteroid use
- > Zinc overload:
 - o Above 40 mg/day
 - Excess may interfere with wound healing via affecting lysyl oxidase, an enzyme involved in collagen synthesis
 - o Excess interferes with copper and iron absorption and metabolism

Copper²⁷

> Cofactor for connective tissue proliferation

Email: www.drnancycollins.com Twitter: @drnancycollins Facebook: www.facebook.com/lightbulbhealth 6

- > Collagen polymerization
- > Formation of cross linkages to enhance scar strength
- > Erythrocyte formation

Ingredient #5: Fluids (Hydration)

- o 1 mL fluid/calorie^{9,28}
- o 30 mL/kg body weight^{9,28}
- Additional fluids for dehydration, fevers, vomiting, profuse sweating, diarrhea, heavily exuding wounds^{9,28}
- o Evaluate the need for additional fluids for patients on air-fluidized therapy surface^{9,28}

RECIPE FOR WOUND HEALING

- > Step 1: Evaluate for malnutrition
- > Step 2: Add the right amount of:
 - o Calories
 - o Protein
 - o Amino acids
 - o Vitamins and minerals
 - o Fluids
- > Step 3: Monitor closely and refer to a registered dietitian nutritionist if necessary

References

- 1. Jensen GL, Mirtallo J, Compher C, et al. Adult starvation and disease-related malnutrition: a rational approach for etiology-based diagnosis in the clinical practice setting from the International Consensus Guideline Committee. *JPEN J Parenter Enteral Nutr.* 2010;34(2):156-159. doi:10.1177/0148607110361910.
- 2. Fry DE, Pine M, Jones BL, Meimban RJ. Patient characteristics and the occurrence of never events. *Arch Surg.* 2010;145(2):148-151. doi:0.1001/archsurg.2009.277.
- 3. White JV, Guenter P, Jensen G, Malone A, Schofield M; Academy Malnutrition Work Group; A.S.P.E.N. Malnutrition Task Force; A.S.P.E.N. Board of Directors. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). *JPEN J Parenter Enteral Nutr.* 2012;36(3):275-283. doi:10.1177/0148607112440285.
- 4. Med-Health. Edema grading. Med-Health website. http://www.med-health.net/Edema-Grading.html. Accessed May 23, 2017.
- 5. Norman K, Stobäus N, Gonzalez MC, Schulzke JD, Pirlich M. Hand grip strength: outcome predictor and marker of nutritional status. *Clin Nutr.* 2011;30(2):135-142. doi:10.1016/j.clnu.2010.09.010.
- 6. Flood A, Chung A, Parker H, Kearns V, O'Sullivan TA. The use of hand grip as a predictor of nutrition status in hospital patients. *Clin Nutr.* 2014;33(1):106-114.
- 7. Demling RH. Nutrition, anabolism, and the wound healing process: an overview. *Eplasty.* 2009;9:e9.
- 8. Demling RH. The role of anabolic hormones for wound healing in catabolic states. *J Burns Wounds.* 2005;4:e2. http://www.eplasty.com/pdf/volume04/jobw04e2.pdf. Accessed May 23, 2017.
- 9. National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel, Pan Pacific Pressure Injury Alliance. *Prevention and Treatment of Pressure Ulcers: Quick Reference Guide*. Emily Haesler, ed. Osborne Park, Western Australia: Cambridge Media; 2014.
- 10. Dorner B, Friedrich EK, Posthauer ME. Practice paper of the American Dietetic Association: individualized nutrition approaches for older adults in health care communities. *J Am Diet Assoc.* 2010:110(10):1554-1563.
- National Institute on Aging. Promoting successful eating in long-term care: relationships with residents are key. US Dept of Health and Human Services website. https://www.nia.nih.gov/alzheimers/features/promoting-successful-eating-long-term-care-relationships-residents-are-key. Published July 1, 2006. Accessed May 23, 2017.
- 12. Gaddey HL, Holder K. Unintentional weight loss in older adults. *Am Fam Physician.* 2014;89(9):718-722. http://www.aafp.org/afp/2014/0501/p718.html. Accessed May 23, 2017.
- 13. Collins N, Schnitzer A. How dietary protein intake promotes wound healing. *Wound Care Advisor*. 2014;3(5):33-36.
- 14. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. *Curr Opin Clin Nutr Metab Care.* 2009;12(1):86-90. doi:10.1097/MCO.0b013e32831cef8b.
- 15. Reeds PJ. Dispensable and indispensable amino acids for humans. *J Nutr.* 2000;130(7):1835S-1840S.
- 16. Barbul A, Lazarou SA, Efron DT, Wasserkrug HL, Efron G. Arginine enhances wound healing and lymphocyte immune responses in humans. *Surgery*. 1990;108(2):331-336.
- 17. Buhaescu I, Izzedine H, Covic A. Sirolimus—challenging current perspectives. *Ther Drug Monit.* 2006;28(5):577-584.
- 18. Escobar J, Frank JW, Suryawan A, et al. Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. *Am J Physiol Endocrinol Metab.* 2005;288(5):E914-E921.
- 19. Jones MS, Rivera M, Puccinelli CL, Wang MY, Williams SJ, Barber AE. Targeted amino acid supplementation in diabetic foot wounds: pilot data and a review of the literature. *Surg Infect* (Larchmt). 2014;15(6):708-712. doi:10.1089/sur.2013.158.
- 20. Escobar J, Frank JW, Suryawan A, et al. Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. *Am J Physiol Endocrinol Metab.* 2005;288(5):E914-E921.

- 21. Tischler ME, Desautels M, Goldberg AL. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? *J Biol Chem.* 1982;257(4):1613-1621.
- 22. Williams JZ, Abumrad N, Barbul A. Effect of a specialized amino acid mixture on human collagen deposition. *Ann Surg.* 2002;236(3):369-375.
- 23. Alon T, Bagchi D, Preuss HG. Supplementing with beta-hydroxy-beta-methylbutyrate (HMB) to build and maintain muscle mass: a review. *Res Commun Mol Pathol Pharmacol*. 2002;111(1-4):139-151.
- 24. Kuhls DA, Rathmacher JA, Musngi MD, et al. Beta-hydroxy-beta-methylbutyrate supplementation in critically ill trauma patients. *J Trauma*. 2007;62(1):125-132.
- 25. Hsieh L, Chien S, Huang M, Tseng H, Chang CK. Anti-inflammatory and anticatabolic effects of short-term beta-hydroxy-beta-methylbutyrate supplementation on chronic obstructive pulmonary disease patients in intensive care unit. *Asia Pac J Clin Nutr.* 2006;15(4):544-550.
- 26. Collins N. Nutrition 411: revisiting vitamin C and wound healing. Ostomy Wound Manage. 2013;59(9):12.
- 27. Molnar JA. Nutrition and Wound Healing. Boca Raton, FL: CRC Press; 2007.
- 28. Lachenbruch C. A laboratory study comparing skin temperature and fluid loss on air-fluidized therapy, low-air-loss, and foam support surfaces. *Ostomy Wound Manage*. 2010;56(8)52-60.